Monday, February 24, 2020

hydrocarbons

Hydrocarbons

  • Compounds of carbon and hydrogen.
  • Classification of Hydrocarbons: 

Alkane

  • Open chain saturated hydrocarbon with general formula (CnH2n+2). 
  • All the C atoms are single bonded i.e. sp3 hybridised.

    Conformations of Alkane

    • Conformations are the different arrangement of atoms that can be converted into one another by rotation about single bonds. 
    • Eclipsed Conformation: H atoms on two adjacent carbon atoms are closest to each other i.e. dehydral angle is 0.
    • Staggered Conformation: H atoms on two adjacent carbon atoms are farthest to each other i.e. dehydral angle is 60.
       
                                              Sawhorse Representation       Newman Representation

    Preparation of Alkanes:

    • Reduction of Alkyl Halides:
     RX + Zn: + H+  → RH + Zn2+ + X-
    4RX + LiAlH4    → 4RH + LiX + AlX3 (X≠ F)                     
    RX + (n - C4H9)3 SnH  → R-H + (n - C4H9)3 SnX
    • Grignard Reagent:
    ?         
    • Hydrogenation of Alkenes:
     
    • Wurtz Reaction:
    2RX  + 2Na  → R-R + 2NaX
    2Na + 2CH3CH2CH2Cl  →  CH3CH2CH2CH2-CH2CH3 + 2NaCl
    • Corey House Reaction:
     
    • Decarboxylation of a mixture of the sodium salt of a carboxylic acid:
     RCOONa +NaOH(CaO) → RH +  Na2CO3
    •  Kolbe's electrolytic method:
    2 RCOOK + 2H2O → R-R + 2CO+ H2+ 2KOH

    Chemical Properties of Alkane

    • Direct Halogenation
    RH + X2→ RX + HX
    Order of Reactivity of X2:    F2 > Cl2 > Br2; I2 does not react
    ?a. Initiation Step
    Cl-Cl \overset{uv}{\rightarrow}2Cl.
    b. Propagation Step
    H3C-H +Cl. → H3C. + H-Cl
    H3C. + Cl-Cl → H3C-Cl +Cl.
    c. Termination Step 
    Cl. + Cl. →Cl-Cl
    H3C. + H3C→ H3C-CH3
    Cl. + H3C. → Cl-CH3
    • Nitration 
    Nitration of alkane is made by heating vapours of alkanes and HNO3 at about 400oC to give nitroalkanes.
    ¨This is also known as vapour phase nitration.
    • Combustion:
    ?Alkanes burn readily with non luminous flame in presence of air or oxygen to give CO2 & water along with evolution of heat.
    C2H+ 7O2 → CO2 +6H2O + heat
    • Aromatization
    ?¨Alkanes having six to 10 carbon atoms are converted into benzene and its homologues at high pressure and temperature in presence of catalyst. 
     
    • Oxidization of 3alkane:?
    Tertiary alkanes are oxidized to tertiary alcoholsby KMnO4
     R3CH + KMnO4 → R3COH

    Alkene (olefins)

    • Open chain, Unsaturated hydrocarbons with general formula (CnH2n).
    • At least one  >c=c<  (double bond) group i.e. sp2 hybridisation, is present throughout the chain.
    • Allene: alkene molecule in which at least one C has double bonds with each of the adjacent carbon i.e. -c=c=c- group. 
    • Isomeric with saturated cycloalkanes.
      

    Geometric Isomers:

    Z is used if the higher - priority substituents on each C are on the same side of the double bond.letter E is used if they are on opposite sides
             
    Heats of Hydrogenation: Heat of hydrogenation increases with increase in stability of alkene.
              
    Order of heat of hydrogenation: 1-Butene> cis-2-Butene > trans-2-Butene
    Order of stability: 1-Butene> cis-2-Butene > trans-2-Butene

    Preparation of Alkenes:

    1. Cracking of petroleum:       
    2. Dehydrohalogenation of alkyl halides:   RCH2CH2X + alc.KOH → RCH = CH2
    3. Dehydration of Alcohols : 
    Saytzeff Rule: In dehydration and dehydrohalogenation the preferential order for removal ofan H is 3° > 2° > 1°
    4. Reduction of alkynes:  
     

    Chemical Properties:

    1. Electrophilic Polar Addition Reactions
    Reagent
    Product
    Name
    Structure
    Name
    Structure
    Halogens
    (Cl2, Br2 only)
    X:X
    Ethylene dihalide
    CH2XCH2X
    Hydrohalic acids
    H:X
    Ethyl halide
    CH3CH2X

    Hypohalous acids

    X:OH

    Ethylene halohydrin

    CH2XCH2OH

    Sulfuric acid (cold)

    H:OSO2OH

    Ethyl bisulfate

    CH3CH2OSO3H

    Water (dil. H3O+)

    H:OH

    Ethyl alcohol

    CH3CH2OH
    Borane

    H2B:H
    Ethyl borane
    (CH3CH2BH2) → (CH3CH2)3B
    Peroxyformic acid

         H:O-OCH=O    
    (HCO3H)
    Ethylene glycol
    CH2OHCH2OH

      2. Addition of Hydrogen Halides to Alkenes: Markovnikov’s Addition:
      R - CH = CH+ HBr → R – CHBr – CH3
      Mechanism:
      R - CH = CH+ HBr → R – CH+ - CH +Br-
      R – CH+ - CH+ Br→ R – CHBr - CH3

      Anit- Markovnikov’s Addition (Peroxide Effect):
      R - CH = CH+ HBr + (C6H5CO)2O2 → R – CHBr – CH3
      Mechanism
      Initiation:
      R - O - O - R  →  2RO.
      RO. +  HBr  →  Br.   +   ROH
      Propagation
      CH3CH = CH2   + Br. →   CH3·CH - CH2Br 
      CH3·CHCH2Br + HBr→ CH3CH2CH2Br + Br.
      Termination:
      2RO.  →  R - O - O - R  
      Br+ Br.→Br2

      3. Addition of Water to Alkenes: Acid Catalyzed Hydration:
      Reagent 
      Product 
      Name
      Structure
      Name
      Structure
      Halogens
      (Cl2, Br2 only)
      X:X
      Ethylene dihalide
      CH2XCH2X
      Hydrohalic acids
      H:X
      Ethyl halide
      CH3CH2X

      Hypohalous acids

      X:OH

      Ethylene halohydrin

      CH2XCH2OH

      Sulfuric acid (cold)

      H:OSO2OH

      Ethyl bisulfate

      CH3CH2OSO3H

      Water (dil. H3O+)

      H:OH

      Ethyl alcohol

      CH3CH2OH
      Borane

      H2B:H
      Ethyl borane
      (CH3CH2BH2)®(CH3CH2)3B
      Peroxyformic acid

      H:O - OCH = O                    
      (HCO3H)
      Ethylene glycol
      CH2OHCH2OH

      4. Oxymercuration-Demercuration:
             
      Examples:
                                                                                               
               












      5. Hydroboration-Oxidation:

      Examples:

      6. Halogen Addition in Non-polar Solvent: 

        

      7. Halogen Addition in Aqueous Medium:


      8. Syn – Hydroxylation: Formation of di-oles. 
                     
               






      9. Ozonolysis of Alkenes:
       

      Alkyne

      • Saturated open chain hydrocarbon with general formula (CnH2n-2).
      • At least one -c≡c-  (triple bond) group i.e. sp hybridisation, is present throughout the chain.
      • Physical properties of alkynes are similar to those of the corresponding  alkenes

      Preparation


      1. Dehydrohalogenation of vic-Dihalides or gem-Dihalides 
           

       
      2. Dehalogenation of vic-Tetrahalogen Compounds


      3. Alkyl Substitution in Acetylene; Acidity of º C-H

      4. From Calcium Carbide:
      CaC2 +2H2O →   Ca(OH)2+ C2H2
      5. Kolbe’s Electrolysis:
       

      Chemical Properties

      1. Hydrogenation: RC ≡ CCH2CH3 + 2H2 →  CH3CH2CH2CH2CH3
      2. Hydro-halogenation:
       Markovnikov addition: RC≡CH +HBr → RCBr=CH2 +HBr→ RCBr2-CH3

       Anti-markovnikov addition: RC≡CH +HBr +peroxide → RCH=CHBr

        

      Aromatic Hydrocarbons: 

      For being aromatic a hydrocarbon should
      • be a cyclic compounds.
      • have planarity in geometry.  
      • have complete delocalization of electrons over ring.
      • follow Huckel Rule i.e. number of ?? electrons in ring = (4n+2).                         :
                Aromatic Hydrocarbons

      Benzene (C6H6)

      1. Structure:
      Kekual Structure of Benzene
       2. Chemical Reactions of Benzene:
        

       Anti-aromatic Hydrocarbons:

      Highly unstable compounds.
      Number of π electrons in ring = 4n. 
      Example: 
       Anti-aromatic Hydrocarbons


      written by arpan ruhil
       Anti-aromatic Hydrocarbons





      for ms dh

      2 comments: